Abstract

A semiclassical theoretical model of a Raman laser possessing a cavity which is resonant at the Stokes wavelength and not resonant at the pump wavelength has been developed. The wave equations describing evolution of amplitudes of the pump and Stokes pulses in the Raman cavity have been derived. Results of the theoretical modeling have been analyzed for conditions of an experiment with the Raman laser on barium nitrate crystal under the nanosecond pulse pump. Numerically calculated energy characteristics of the Raman laser as well as space-time dynamics of the Stokes generation have been demonstrated to be in reasonable agreement with the experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.