Abstract

The vibrational dynamics of formic acid dimer is quite regular at low fundamental excitation frequencies, whereas it evolves into a complex and irregular vibrational signature in the OH stretching region. This is evidenced by the first Raman investigation of the jet-cooled formic acid dimer and its three deuterated isotopomers. Subtle isotope effects in the inter-monomer stretching mode, which is directly observed for the first time at 194 cm(-1), find an interpretation based on hydrogen bond weakening due to quantum delocalization of the protons. The reported high-frequency jet spectra should provide essential experimental stepping stones towards a more complete understanding of this planar prototype for strong double hydrogen bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.