Abstract
Under inert gas flow and high temperature, carbonization of aluminum-based metal–organic frameworks (MOFs) was carried out. The formation rate of carbonized MOFs (CMOFs) was monitored by the variation of the Raman D band to G band intensity ratio with heat treatment duration. Powder x-ray diffraction (PXRD) and scanning electron microscope (SEM) techniques were used to confirm the formation of CMOFs. The activation energy was extracted from the temperature-dependent rate constants using the Arrhenius equation and correlated with the structural properties of precursor MOFs such as pore size and the number of carbon atoms per ligand. A reaction mechanism is proposed and discussed for the formation of CMOFs based on Raman observation. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.