Abstract

Electron Raman scattering of a hydrogenic impurity is studied using exact diagonalization method in a BxGa1−xN/BN coupled quantum well. Intersubband scattering rates, in a Boron based wide band gap GaN, are considered. BxGa1−xN semiconductor is taken as inner quantum well and BN material is taken as barrier material. The effect of quantum confinement on the differential cross section of Raman scattering, with and without the impurity, is obtained. The built-in internal electric field is included throughout the calculations. The third order susceptibility with the incident photon energy is calculated with and without doping impurity. The donor hydrogenic binding energy and its low lying excited states are computed taking into account the geometrical confinement. The binding energy is obtained for various impurity position and the Boron alloy content in BxGa1−xN quantum well. It is brought out that the geometrical confinement and built-in internal electric fields have great influence on the optical properties of the semiconductor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.