Abstract

Optical phase conjugation (OPC) can be applied to boost the performance of long-haul transmission by mitigating the impairments from fiber nonlinearity. Unfortunately, noticeable nonlinear noise in the conjugator for optical orthogonal frequency division multiplexing (OFDM) systems often degrades the signal quality. In this paper, we demonstrate nonlinear distortion mitigation in OPC by introducing backward Raman amplification to the conjugator. Raman amplification allows a lower input signal power, thus suppressing the OPC distortion while maintaining the conjugated output power. We investigate the performances of Raman-enhanced OPC in both back-to-back (BTB) and transmission systems with 3 × 25 Gbaud optical OFDM signals. In the BTB OPC system, Raman amplification boosts the tolerance to system nonlinearity, achieving a 3-dB improvement in the output power, a 2.4-dB improvement in the Q factor, and a 6-dB improvement in the input dynamic range. In the transmission system with Raman-enhanced OPC, the optimum launched power is increased by 2 dB and the maximum Q factor is increased by 0.4 dB compared to direct transmission. Similar performances are observed in all the wavelengths, indicating that our scheme works well with WDM transmission systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.