Abstract

Probing bond breaking and making as well as related structural changes at the single-molecule level is of paramount importance for understanding the mechanism of chemical reactions. In this work, we report in situ tracking of bond breaking and making of an up-standing melamine molecule chemisorbed on Cu(100) by subnanometer resolved tip-enhanced Raman spectroscopy (TERS). We demonstrate a vertical detection depth of about 4 Å with spectral sensitivity at the single chemical-bond level, which allows us not only to justify the up-standing configuration involving a dehydrogenation process at the bottom upon chemisorption, but also to specify the breaking of top N-H bonds and the transformation to its tautomer during photon-induced hydrogen transfer reactions. Our results indicate the chemical and structural sensitivity of TERS for single-molecule recognition beyond flat-lying planar molecules, providing new opportunities for probing the microscopic mechanism of molecular adsorption and surface reactions at the chemical-bond level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call