Abstract

The homodyne-detected transient four-wave-mixing response of InAs/GaAs self-assembled quantum dots shows temporal oscillations of the optically induced Raman coherence arising from two entangled polarization eigenstates of the exciton. The phase sensitive nature of the homodyne detection enables us to follow the time evolution of the nonradiative quantum coherence between the polarization states, providing a measurement of the fine-structure splitting in the dots, which is much less than the inhomogeneous broadening, and the corresponding decoherence rate of the entangled state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call