Abstract
The 9,10-di(thiophen-2-yl)anthracene (TAT), 9,10-di(furan-2-yl)anthracene (FAF) and 2-[(10-(thiophen-2-yl)anthracen-9-yl)]furan (TAF) cruciform molecular systems were synthesized using one-step coupling reactions and structurally characterized via Raman, infrared, 1H NMR, 13C NMR and mass spectroscopies. The orientation of the analytes on a gold colloidal surface was inferred from a surface-enhanced Raman scattering (SERS) study. The metal surface interaction was driven by the S and O atoms of the thiophene and furan α-substituents, and the plane of the anthracene fragment remained parallel to the surface. Theoretical calculations based on a simplified molecular model for the analyte-surface interaction provide a good representation of the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.