Abstract

This paper reports and compares Raman and infrared thermometry measurements along the legs and on the shuttle of a SOI (silicon on insulator) bent-beam thermal microactuator. Raman thermometry offers micron spatial resolution and measurement uncertainties of ±10 K. Typical data collection times are a minute per location leading to measurement times on the order of hours for a complete temperature profile. Infrared thermometry obtains a full-field measurement so the data collection time is on the order of a minute. The spatial resolution is determined by the pixel size, 25 μm by 25 μm for the system used, and infrared thermometry also has uncertainties of ±10 K after calibration with a nonpackaged sample. The Raman and infrared measured temperatures agreed both qualitatively and quantitatively. For example, when the thermal microactuator was operated at 7 V, the peak temperature on an interior leg is 437 K ± 10 K and 433 K ± 10 K from Raman and infrared thermometry, respectively. The two techniques are complementary for microsystems characterization when infrared imaging obtains a full-field temperature measurement and Raman thermometry interrogates regions for which higher spatial resolution is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.