Abstract

The Li2Mo4O13 melt structure and its Raman spectral characteristics are the key for establishing the composition-structure relationship of lithium molybdate melts. In this work, Raman spectroscopy, factor group analysis, and density functional theory (DFT) were applied to investigate the structural and spectral details of the H-Li2Mo4O13 crystal and a Li2Mo4O13 melt. Factor group analysis shows that the crystal has 171 vibrational modes (84Ag + 87Au), including three acoustic modes (3Au), six librational modes (2Ag + 4Au), 21 translational modes (7Ag + 14Au), and 141 internal modes (75Ag + 66Au). All of the Ag modes are Raman-active and were assigned by the DFT method. The Li2Mo4O13 melt structure was deduced from the H-Li2Mo4O13 crystal structure and demonstrated by the DFT method. The results show that the Li2Mo4O13 melt is made up of Li+ ions and Mo4O132- groups, each of which is formed by four corner-sharing MoO3Ø/MoO2Ø2 tetrahedra (Ø = bridging oxygen). The melt has three acoustic modes (3A) and 54 optical modes (54A). All of the optical modes are Raman-active and were accurately assigned by the DFT method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call