Abstract

Stratum corneum (SC), the outermost layer of the epidermis, is the primary barrier to percutaneous absorption. The diffusion of substances through the skin occurs through the SC lipid fraction, which is essentially constituted of an equimolar mixture of ceramides, free fatty acids, and cholesterol. The lipid constituents of SC are mainly forming continuous multilamellar membranes in the solid/crystalline state. However, recent findings suggest the presence of a highly disordered (liquid) phase formed by the unsaturated C18 chain of ceramide EOS, surrounded by a highly ordered lipid environment. The aim of the present work was to study the lipid spatial distribution of model SC membranes composed of ceramide EOS, ceramide NS, a mixture of free fatty acids, and cholesterol, using Raman microspectroscopy and AFM-IR spectroscopy techniques. The enhanced spatial resolution at the tens of nanometers scale of the AFM-IR technique revealed that the lipid matrix is overall homogeneous, with the presence of small, slightly enriched, and depleted regions in a lipid component. No liquid domains of ceramide EOS were observed at this scale, a result that is consistent with the model proposing that the oleate nanodrops are concentrated in the central layer of the three-layer organization of the SC membranes forming the long periodicity phase. In addition, both Raman microspectroscopy and AFM-IR techniques confirmed the fluid nature of the unsaturated chain of ceramide EOS while the rest of the lipid matrix was found highly ordered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call