Abstract

ABSTRACTThe frequencies of the E2(high), A1(LO), A1(TO), E1(TO) and E1(LO) phonons of singlecrystalline bulk AlN were measured using micro-Raman spectroscopy over a temperature range from 10K to 1275K. A modeling of the temperature dependence of the AlN phonon frequencies considering the thermal lattice expansion and two-phonon decay mechanisms gave results in good agreement with the experimental data. At temperatures in excess of ∼300K an approximate linear shift of the phonon frequencies with temperature was found. In this high temperature regime, we determined a frequency shift of the E2(high) phonon of (-2.22 ± 0.02) ×10−2cm−1/K, which is very similar to values reported for bulk GaN. This suggests that similar parameters will be suitable for AlxGa1−xN alloys, commonly used in high-power high-frequency electronic devices. The results provide the basis for non-invasive local temperature monitoring in highpower III-nitride devices using micro-Raman scattering techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.