Abstract

Ramachandran conformational energy maps have been prepared for all of the glycosidic linkages found in the C1576 exopolysaccharide that constitutes the biofilms of the bacterial species Burkholderia multivorans, a member of the Burkholderia cepacian complex that was isolated from a cystic fibrosis patient. This polysaccharide is a rhamnomannan with a tetrasaccharide repeat unit containing two mannose residues and two rhamnose residues, –[3-α-d-Man-(1→2)-α-d-Man-(1→2)-α-d-Rha-(1→3)-α-d-Rha-(1→]n–, where approximately 50% of the rhamnoses are randomly methylated on their O3 hydroxyl groups, further increasing the overall hydrophobicity of the chains. Because of the methylation, the tetrasaccharide repeat unit actually contains six possible linkages. The conformational energy maps are fully adiabatic relaxed maps in which the energy for each (ϕ,ψ) grid point on the map represents the lowest possible energy for the molecule in that conformation, considering all the combinations of the other degrees of freedom, such as hydroxyl orientations. Molecular dynamics simulations were used to verify that these maps indeed describe the conformational dynamics of these linkages. All six linkages were found to be quite restricted in possible ϕ angles, but to exhibit several possible low-energy ψ angles, suggesting that these chains could be quite flexible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.