Abstract

Ralstonia metallidurans, formerly known as Alcaligenes eutrophus and thereafter as Ralstonia eutropha, is a β-Proteobacterium colonizing industrial sediments, soils or wastes with a high content of heavy metals. The type strain CH34 carries two large plasmids (pMOL28 and pMOL30) bearing a variety of genes for metal resistance. A chronological overview describes the progress made in the knowledge of the plasmid-borne metal resistance mechanisms, the genetics of R. metallidurans CH34 and its taxonomy, and the applications of this strain in the fields of environmental remediation and microbial ecology. Recently, the sequence draft of the genome of R. metallidurans has become available. This allowed a comparison of these preliminary data with the published genome data of the plant pathogen Ralstonia solanacearum, which harbors a megaplasmid (of 2.1 Mb) carrying some metal resistance genes that are similar to those found in R. metallidurans CH34. In addition, a first inventory of metal resistance genes and operons across these two organisms could be made. This inventory, which partly relied on the use of proteomic approaches, revealed the presence of numerous loci not only on the large plasmids pMOL28 and pMOL30 but also on the chromosome. It suggests that metal-resistant Ralstonia, through evolution, are particularly well adapted to the harsh environments typically created by extreme anthropogenic situations or biotopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.