Abstract

Neuronal polarization requires localized cytoskeletal changes and polarized membrane traffic. Here, I report that the small GTPase RalA, previously shown to control neurite branching, also regulates neuronal polarity. RalA depletion, or ectopic expression of constitutively active RalA in cultured neurons inhibit axon formation. However, expression of a constitutively active RalA mutant that is unable to interact with the exocyst complex has no effect on neuronal polarization. Furthermore, depletion of the Sec6, Sec8 or Exo84 subunits of the exocyst complex also leads to unpolarized neurons. Early stages of neuronal polarization are accompanied by increasing levels of interaction of the exocyst complex with PAR-3 and atypical protein kinase C (aPKC), and by the RalA-dependent association of the exocyst complex with PAR-3. Thus, neuronal polarization involves a RalA-regulated association between mediators of vesicle trafficking (exocyst complex) and cell polarity (PAR-3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.