Abstract

Medical studies that depend on electronic health records (EHR) data are often subject to measurement error, as the data are not collected to support research questions under study. These data errors, if not accounted for in study analyses, can obscure or cause spurious associations between patient exposures and disease risk. Methodology to address covariate measurement error has been well developed; however, time-to-event error has also been shown to cause significant bias, but methods to address it are relatively underdeveloped. More generally, it is possible to observe errors in both the covariate and the time-to-event outcome that are correlated. We propose regression calibration (RC) estimators to simultaneously address correlated error in the covariates and the censored event time. Although RC can perform well in many settings with covariate measurement error, it is biased for nonlinear regression models, such as the Cox model. Thus, we additionally propose raking estimators which are consistent estimators of the parameter defined by the population estimating equation. Raking can improve upon RC in certain settings with failure-time data, require no explicit modeling of the error structure, and can be utilized under outcome-dependent sampling designs. We discuss features of the underlying estimation problem that affect the degree of improvement the raking estimator has over the RC approach. Detailed simulation studies are presented to examine the performance of the proposed estimators under varying levels of signal, error, and censoring. The methodology is illustrated on observational EHR data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call