Abstract

In this paper we discuss the results of experiments which use a context, essentially an ordered set of lexical items, as the seed from which to build a network representing statistically important relationships among lexical items in some corpus. A metric is then applied to the nodes in the network in order to discover those pairs of items related by high indices of similarity. The goal of this research is to instantiate a class of items corresponding to each item in the priming context. We believe that this instantiation process is ultimately a special case of abstraction over the entire network; in this abstraction, similar nodes are collapsed into metanodes which may then function as if they were single lexical items.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.