Abstract

We show that by combining the elementary Goldstone–Higgs scenario and supersymmetry it is possible to raise the scale of supersymmetry breaking to several TeVs by relating it to the spontaneous-symmetry-breaking one. This is achieved by first enhancing the global symmetries of the super-Higgs sector to SU(4) and then embedding the electroweak sector and the Standard Model (SM) fermions. We determine the conditions under which the model achieves a vacuum such that the resulting Higgs is a pseudo-Goldstone boson (pGB). The main results are: the supersymmetry-breaking scale is identified with the spontaneous-symmetry-breaking scale of SU(4) which is several TeVs above the radiatively induced electroweak scale; intriguingly the global symmetry of the Higgs sector predicts the existence of two super-Higgs multiplets with one mass eigenstate playing the role of the pseudo-Goldstone Higgs; the symmetry-breaking dynamics fixes [Formula: see text] and requires a supplementary singlet chiral superfield. We finally discuss the spectrum of the model that now features the superpartners of the SM fermions and gauge bosons in the multi-TeV range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call