Abstract

Battery safety concerns are becoming more and more prominent with the increasing demands of lithium-ion batteries (LIBs) with higher energy density. The greatest threat to battery safety derives from the easy release of oxygen from the high-capacity layered oxide cathodes at highly delithiated states and subsequent exothermic reactions with reductive agents in batteries. Herein, it is demonstrated that solid electrolyte Li6.5 La3 Zr1.5 Ta0.5 O12 (LLZTO) can supply lithium ions to re-lithiate the charged LiCoO2 at elevated temperatures. Such a re-lithiation process can lower the state-of-charge of LiCoO2 , and thus, inherently postpones its structural decomposition and the associated release of oxygen during the heating process. The LiCoO2 /graphite full cell with 1wt% addition of LLZTO demonstrates remarkably enhanced safety performances. This work proposes a strategy that through the adoption of solid electrolytes to solve safety issues raised from both flammable liquid electrolytes and high capacity cathodes, to achieve intrinsically safe LIBs or solid-state batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.