Abstract

We report here that the monodentate complexation of Me2AlCl to an ester group significantly enhances the selectivity of hydrogen transfer on acyclic radicals flanked by both an ester functionality and a stereogenic center, leading to C-2,C-3-anti products with high diastereoselectivity. In certain cases improved ratios were obtained using bulkier aluminum Lewis acid such as MAD (methylaluminum-di(di-2,6-tert-butyl-4-methylphenoxide). Electron spin resonance studies on these acyclic radicals indicate that Lewis acid complexation leads to conformational changes in the radicals. The stereochemistry of the preferred enolate radicals complexed with Lewis acids and their impact on the acyclic transition states involved are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.