Abstract

Around 5 % of mammals are socially monogamous and both parents provide care to the pups (biparental, BP). Prairie voles are socially monogamous rodents extensively used to understand the neurobiological basis of pair bond formation and the consequences that the absence of one parent has in the offspring. Pair bonding, characterized by selective affiliation with a sexual partner, is facilitated in prairie voles by mating for 6 h or cohabitation without mating for 24 h. It was previously shown that prairie voles raised by their mother alone (monoparental, MP) show delayed pair bond formation upon reaching adulthood. In this study we evaluated the effects of BP and MP care provided on the offspring’s development, ability to detect olfactory cues, preference for sexually relevant odors, display of sexual behavior, as well as the rewarding effects of mating. We also measured dopamine and serotonin concentration in the nucleus accumbens (ventral striatum) and dorsal striatum after cohabitation and mating (CM) to determine if differences in these neurotransmitters could underlie the delay in pair bond formation in MP voles. Our data showed that MP voles received less licking/grooming than BP voles, but no developmental differences between groups were found. No differences were found in the detection and discrimination of olfactory cues or preference for sexually relevant odors, as all groups innately preferred opposite sex odors. No differences were found in the display of sexual behavior. However, CM induced reinforcing properties only in BP males, followed by a preference for their sexual partner in BP but not MP males. BP males showed an increase in dopamine turnover (DOPAC/DA and HVA/DA) in the nucleus accumbens in comparison to MP voles. No differences in dopamine, serotonin or their metabolites were found in the dorsal striatum. Our results indicate that MP voles that received less licking behavior exhibit a delay in pair bond formation possibly because the sexual interaction is not rewarding enough.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call