Abstract
In this simulation-based study, the raised-source/drain (RSD) double-gate MOSFET design is optimized for scaling to gate lengths below 10 nm, and its performance is compared against that of the dopant-segregated Schottky (DSS) double-gate MOSFET design, for applications requiring low operating power. It is found that the RSD design provides for higher drive current and shorter intrinsic delay than the DSS design, for the same total device length (<; 30 nm). Thus, the use of RSD regions is the preferred approach to lower parasitic resistance for deeply scaled double-gate MOSFETs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.