Abstract

Abstract Chloride and sulphate concentrations in rainwater and water-soluble leachates from volcanic ash samples track the compositions of gas emissions at the Soufrière Hills Volcano, Montserrat, from 1996 to 2001. There are both systematic spatial and temporal variations in the chloride/sulphate ratio (expressed as the equivalent HCl/SO 2 mass ratio) in rainwater and ash leachates. Temporal variations reflect changes in eruption rate and eruptive style. Mass ratios of HCl/SO 2 in ash leachates correspond closely with those obtained by open-path Fourier transform infrared (OP-FTIR) spectroscopy, and reflect changes in volatile emissions throughout the eruption. Both leachate and OP-FTIR spectroscopic analyses show mass ratios of HCl/SO 2 > 1 during dome growth, and HCl/SO 2 < 1 during non-eruptive periods. The HCl/SO 2 mass ratios in rainwater samples from 1996 and 1997 show temporal variations that correlate with changes in extrusion rate. The HCl/SO 2 ratios in plume-affected rainwater and ash leachates from June and July 2001 correlate positively with increasing rockfall energy, and with increasing eruption rate prior to a dome collapse event. The HCl/SO 2 mass ratios in water-soluble ash leachates and rainwater samples collected at the same time and from the same sites, are linearly correlated, with rainwater HCl/SO 2 ratios systematically two to three times higher than ash leachate ratios. Spatial patterns of rainwater pH, and HCl/SO 2 in rainwater and ash leachates are principally influenced by the proximity of the sampling sites to the active dome, and to the typical pattern of dispersion of the plume by tropospheric winds. These results demonstrate that rainwater chemistry and ash leachate analysis provides a useful indicator of volcanic activity, and represents a valuable supplement to volcano surveillance efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.