Abstract

This study sought to determine the spatial and temporal variability of rainfall under past and future climate scenarios. The data used comprised station-based monthly gridded rainfall data sourced from the Climate Research Unit (CRU) and monthly model outputs from the Fourth Edition of the Rossby Centre (RCA4) Regional Climate Model (RCM), which has scaled-down nine GCMs for Africa. Although the 9 Global Climate Models (GCMs) downscaled by the RCA4 model was not very good at simulating rainfall in Kenya, the ensemble of the 9 models performed better and could be used for further studies. The ensemble of the models was thus bias-corrected using the scaling method to reduce the error; lower values of bias and Normalized Root Mean Square Error (NRMSE) were recorded when compared to the uncorrected models. The bias-corrected ensemble was used to study the spatial and temporal behaviour of rainfall under baseline (1971 to 2000) and future RCP 4.5 and 8.5 scenarios (2021 to 2050). An insignificant trend was noted under the baseline condition during the March-May (MAM) and October-December (OND) rainfall seasons. A positive significant trend at 5% level was noted under RCP 4.5 and 8.5 scenarios in some stations during both MAM and OND seasons. The increase in rainfall was attributed to global warming due to increased anthropogenic emissions of greenhouse gases. Results on the spatial variability of rainfall indicate the spatial extent of rainfall will increase under both RCP 4.5 and RCP 8.5 scenario when compared to the baseline; the increase is higher under the RCP 8.5 scenario. Overall rainfall was found to be highly variable in space and time, there is a need to invest in the early dissemination of weather forecasts to help farmers adequately prepare in case of unfavorable weather. Concerning the expected increase in rainfall in the future, policymakers need to consider the results of this study while preparing mitigation strategies against the effects of changing rainfall patterns.

Highlights

  • Natural resources drive economic growth and livelihoods in Kenya

  • The increase in rainfall was attributed to global warming due to increased anthropogenic emissions of greenhouse gases

  • Results on the spatial variability of rainfall indicate the spatial extent of rainfall will increase under both RCP 4.5 and RCP 8.5 scenario when compared to the baseline; the increase is higher under the RCP 8.5 scenario

Read more

Summary

Introduction

Natural resources drive economic growth and livelihoods in Kenya This dependence means that fluctuation in climate, especially in rainfall; undesirably affects the biological, physical, and socio-economical setups resulting in disasters such as loss of livestock and crop failure in the agricultural sector (Bobadoye et al, 2014; Omoyo et al, 2015). Global climate models and regional climate models are examples of datasets used during climate impact studies These models often carry biases which if unattended can spill over into climate change adaptation strategies (Ayugi et al, 2020). This study used a MME of nine GCMs (downscaled using the CORDEX Fourth edition of Rossby Centre (RCA4) Regional Climate Model (RCM)) bias-corrected using the scaling method to study the spatial and temporal variability of rainfall under past and future climates (RCP 4.5 and RCP 8.5 scenarios). The RCA4 RCM was chosen since it has downscaled the largest number of GCMs for Africa under the CORDEX project, and there is a need to study how well these downscaled GCMs compare with observed data

Study Area
Data Description
Methodology
Performance of Models in Simulating Historical Climate
Results and Discussions
Bias-Correction of Rainfall during the MAM and OND Rainfall Seasons
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call