Abstract

Southern West Africa (SWA) is characterised by a wide range of rainfall types, the relative importance of which have never been quantified on a regional level. Here, we use 16 years of three‐dimensional reflectivity data from the Tropical Rainfall Measuring Mission–Precipitation Radar (TRMM‐PR) to objectively distinguish between seven different rainfall types in three subregions of SWA.Highly organized Mesoscale Convective System (MCS) events are the dominating rain‐bearing systems in SWA. They tend to occur in highly sheared environments as a result of mid‐level northeasterlies ahead of a cyclonic vortex. Their contribution to annual rainfall decreases from 71% in the Soudanian to 56% in the coastal zone. MCSs in SWA also propagate slower than their Sahelian counterparts and occur predominantly at the start of the first coastal rainy season. However, in terms of numbers, about 90% of rainfall systems are weakly organized classes, particularly small‐sized, highly reflective and moderately deep (40 dBZ at altitude <10 km) systems. Contrary to MCSs, less organized convection typically occurs during and after the passage of a cyclonic vortex within a regime of deep westerly anomalies, low wind shear and low to moderate CAPE (convective available potential energy), bearing some resemblance to what has been termed “monsoon” or “vortex rainfall”. Combining TRMM‐PR rainfall system identification with infrared‐based cloud tracking reveals that organized convection over SWA typically lasts for more than >9 h, whereas less intense rainfall types tend to be short‐lived, diurnal phenomena.This novel approach stresses the relevance of mid‐level (wave) disturbances on the type and lifetime of convective systems and thereby their regionally, seasonally and diurnally varying contribution to rainfall amount. The present study suggests further investigations into the character of the disturbances as well as possible implications for operational forecasting and the understanding of rainfall variability in SWA.

Highlights

  • Rainfall over West Africa is mainly related to the West African monsoon (WAM) system and is known to vary considerably from year to year and on decadal time-scales (e.g. Diatta and Fink, 2014)

  • Our results suggest that thermodynamic conditions are of lesser importance for the horizontal growth of convective systems, but rather indicate the potential of their initial vertical development

  • Pronounced differences in environmental conditions for the various rainfall types have been determined, this study has not investigated the conditions that lead to both their genesis and demise

Read more

Summary

Introduction

Rainfall over West Africa is mainly related to the West African monsoon (WAM) system and is known to vary considerably from year to year and on decadal time-scales (e.g. Diatta and Fink, 2014). Due to the prevalence of smallholder farming and rain-fed agriculture in West Africa, delayed onsets of the monsoon rains, monsoon breaks, flash floods, larger-scale seasonal inundations and longer-term droughts have large socio-economic impacts Against these high vulnerabilities, disaster risk and mitigation measures are, amongst others, limited by the forecast skill of global numerical weather prediction models that barely exceeds climatology (Vogel et al, 2018), and by CMIP5 rainfall projections for. The objectives of the present study are (a) to define rainfall types and their climatologies for southern West Africa (SWA) based on data from the Tropical Rainfall Measuring Mission–Precipitation Radar (TRMM-PR), (b) to relate them to typical synoptic environments, and (c) to link them to previously known, infrared (IR)-based rainfall classifications These will, inter alia, aid a better interpretation of weather and climate forecasts/projections, since larger-scale synoptic environments can be better represented than the rainfall itself

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call