Abstract

We review rainfall thresholds for the initiation of landslides world wide and propose new empirical rainfall thresholds for the Central European Adriatic Danubian South-Eastern Space (CADSES) area, located in central and southern Europe. One-hundred-twenty-four empirical thresholds linking measurements of the event and the antecedent rainfall conditions to the occurrence of landslides are considered. We then describe a database of 853 rainfall events that resulted or did not result in landslides in the CADSES area. Rainfall and landslide information in the database was obtained from the literature; climate information was obtained from the global climate dataset compiled by the Climate Research Unit of the East Anglia University. We plot the intensity-duration values in logarithmic coordinates, and we establish that with increased rainfall duration the minimum intensity likely to trigger slope failures decreases linearly, in the range of durations from 20 minutes to ∼12 days. Based on this observation, we determine minimum intensity-duration (ID) and normalized-ID thresholds for the initiation of landslides in the CADSES area. Normalization is performed using two climatic indexes, the mean annual precipitation (MAP) and the rainy-day-normal (RDN). Threshold curves are inferred from the available data using a Bayesian statistical technique. Analysing the obtained thresholds we establish that lower average rainfall intensity is required to initiate landslides in an area with a mountain climate, than in an area characterized by a Mediterranean climate. We further suggest that for rainfall periods exceeding ∼12 days landslides are triggered by factors not considered by the ID model. The obtained thresholds can be used in operation landslide warning systems, where more accurate local or regional thresholds are not available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call