Abstract

Relying on a linear causal thinking, most of the hydrological models fail to incorporate socio-economic characteristics of a watershed with hydrological and environmental attributes. Based on a systems thinking philosophy, the paper aims to adopt an Object-Oriented (OO) approach based on the concepts of System Dynamics (SD) such as stocks and flows to analyze the dynamics in a hydrological system in a watershed scale. Object-Oriented modeling is a way to organize data into discrete, recognizable entities called objects. These objects could be concrete (such as a river reach) or conceptual (such as a policy decision). In the present paper, VENSIM PLE has been used for the modeling purpose. The application was illustrated in an Iranian watershed. The model was examined using validity and verifying tests. The results showed that the model is capable of generating the monthly runoff quite well. The values of R2 are 0.69 and 0.61 for generated discharge values at Polchehr and Doab stations respectively. Also the values of NSE are 0.66 and 0.64 for estimated discharge values at the same stations. The capability of model was more clarified comparing R2 and NSE coefficients obtained by a SWAT model with those obtained by Watershed Hydrological Model developed in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.