Abstract

Landslides triggered by rainfall are one of the most frequent causes of disasters in tropical countries and mountainous terrains. Recent studies show an upsurge in landslide occurrence as an expected impact of human-induced climate change. This paper presents the analysis and implementation of two different physically-based models, SHALSTAB and TRIGRS, to evaluate the effect of rainfall on landslide hazard assessment in the north-western Colombian Andes. Intensity-Duration-Frequency curves were used in climate change scenarios for different return periods. According to the results, although higher rainfall intensities increase, landslide occurrence does not escalate in a direct or proportional relationship. Considering a steady infiltration process (SHALSTAB), the results show an expansion of d unstable areas, compared with a transient infiltration process (TRIGRS). A greater influence of rainfall duration instead of rainfall intensity was observed. The results highlight the need for studies that incorporate the scenarios of variability and climate change in the hazard assessment and land planning in the long term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.