Abstract
Increasing drought caused by the ongoing climate change, and forest management by thinning that aims at mitigating its impact, may modify the current relationships between forest functions and drought intensity and preclude our ability to forecast future ecosystem responses. We used 15yr of data from an experimental rainfall exclusion (-27% of rainfall) combined with thinning (-30% stand basal area) to investigate differences in the drought-function relationships for each component of above-ground net primary productivity (ANPP) and stand transpiration in a Mediterranean Quercus ilex stand. Rainfall exclusion reduced stand ANPP by 10%, mainly because of lowered leaf and acorn production, whereas wood production remained unaffected. These responses were consistent with the temporal sensitivity to drought among tree organs but revealed an increased allocation to wood. Thinning increased wood and acorn production and reduced the sensitivity of standing wood biomass change to drought. Rainfall exclusion and thinning lowered the intercept of the transpiration-drought relationship as a result of the structural constraints exerted by lower leaf and sapwood area. The results suggest that historical drought-function relationships can be used to infer future drought impacts on stand ANPP but not on water fluxes. Thinning can mitigate drought effects and reduce forest sensitivity to drought.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.