Abstract

Rainfall and earthquakes are two major triggers for landslides. To assess annual rainfall-earthquake-induced landslide hazards, an ensemble model containing three modules: an uncertainty-analysis module, a simulation module and an output module was proposed. In the uncertainty-analysis module, the input parameters including the topography (slope, curvature), soil depth, rainfall, peak ground acceleration and soil physical properties were considered probabilistic rather than taking specific values. A rainfall-earthquake-induced landslide hazard assessment was carried out in the simulation module, which used two separate methods: a pseudo-static model and a Newmark displacement model based on probabilistic data, which were prepared in the uncertainty-analysis module using the Monte Carlo simulation technique. In the output module, the two landslide hazard evaluations were combined into one map. The combined landslide hazard provides a range of annual probabilities of landslide occurrence corresponding to specific confidence levels. The proposed model can be used for reliable forecasting at specific confidence levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call