Abstract

Climate change and variability, particularly which of the annual rainfall, has received a great deal of interest to researchers worldwide. The extent of the variability of rainfall varies according to locations. Consequently, investigating the dynamics of rainfall variable in the perspective of changing climate is important to evaluate the impact of climate change and adapt potential mitigation strategies. To gain insight, trend analysis has been employed to inspect and quantify the rainfall distribution in the Chintapalli, Visakhapatnam district of Andhra Pradesh, India. Thirty-one years for a period of 1990–2020 long historical rainfall data series for different temporal scales (Monthly, Seasonal and Annual) of the study region was used for the analysis. Statistical trend analysis techniques namely Mann–Kendall (MK) test was used to detect the trend. To compute trend magnitude, Theil–Sen approach (TSA) was used for calculation of Sen’s slope. The detailed analysis of the data for 31 years indicates positive increasing trend with 2.13mm per year derived from the linear regression. MK test detected that there were rising and falling trends for various time scales in the study area. Departure analysis of rainfall indicated that a possible chance of normal rainfall, more frequently in the area. Rainfall Anomaly Index (RAI) analysis revealed that normal for most of the years, however, 2002 is the very dry year. While last ten years, the frequency of drought occurrence is thrice, but the magnitude is low. The study results will help in persuading the rainfall risks with effective use of water resources which can increase crop productivity and likely to manage natural resources for sustainability at HAT zone of Andhra Pradesh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.