Abstract
A ray-theoretic account of the passage of light through a radially inhomogeneous transparent sphere has been used to establish the existence of multiple primary rainbows for some refractive index profiles. The existence of such additional bows is a consequence of a sufficiently attractive potential in the interior of the drop, i.e., the refractive index gradient should be sufficiently negative there. The profiles for which this gradient is monotonically increasing do not result in this phenomenon, but nonmonotone profiles can do so, depending on the form of n. Sufficiently oscillatory profiles can lead to apparently singular behavior in the deviation angle (within the geometrical optics approximation) as well as multiple rainbows. These results also apply to systems with circular cylindrical cross sections, and may be of value in the field of rainbow refractometry.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.