Abstract

State-of-the-art differential cross sections (DCSs) have been reported by Wang et al. [Proc. Nat. Acad. Sci. (U.S.), 2008, 105, 6227] for the state-to-state F + H(2)→ FH + H reaction using fully quantum-state-selected crossed molecular beams. We theoretically analyze the angular scattering of this reaction, in order to quantitatively understand the physical content of structure in the DCSs. Three transitions are studied, v(i)=0, j(i)=0, m(i)=0 → v(f)=3, j(f)=0, 1, 2, m(f)=0 at a translational energy of 0.04088 eV, where v, j, m are the vibrational, rotational and helicity quantum numbers respectively for the initial and final states. The input to our analyses consists of accurate quantum scattering (S) matrix elements computed for the Fu-Xu-Zhang potential energy surface, as used by Wang et al. in a computational simulation of their experimental DCSs. We prove that the pronounced peak at forward angles observed in the experimental and simulated DCSs for all three transitions is a glory. At larger angles, it is demonstrated that the 000 → 300 and 000 → 310 DCSs both possess a broad farside rainbow, which is accompanied by diffraction oscillations. We confirm the conjecture of Wang et al. that these diffraction oscillations arise from nearside-farside (NF) interference. We find that the reaction is N dominant for all three transitions. The theoretical techniques used to analyze the angular scattering include uniform semiclassical theories of glory and of rainbow scattering. We also make the first application of a semiclassical formula that is uniform for both glory + rainbow scattering. In addition, structure in the DCSs is analyzed using NF theory and local angular momentum theory, in both cases with three resummations of the partial wave series for the scattering amplitude. We make the first explicit application of the Thiele rational interpolation formula to extract the position and residue of the leading Regge pole from a set of S matrix elements, thereby making contact with complex angular momentum theories of DCSs, which interpret the angular scattering in terms of Regge resonances. Our calculations complement the exit-valley vibrationally-adiabatic analysis of Wang et al.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.