Abstract

Let G be an edge-colored graph. The color degree of a vertex v of G, is defined as the number of colors of the edges incident to v. The color number of G is defined as the number of colors of the edges in G. A rainbow triangle is one in which every pair of edges have distinct colors. In this paper we give some sufficient conditions for the existence of rainbow triangles in edge-colored graphs in terms of color degree, color number and edge number. As a corollary, a conjecture proposed by Li and Wang [H. Li and G. Wang, Color degree and heterochromatic cycles in edge-colored graphs, European J. Combin. 33 (2012) 1958–1964] is confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.