Abstract
Suppose that k is a non-negative integer and a bipartite multigraph G is the union of $$\begin{aligned} N=\left\lfloor \frac{k+2}{k+1}n\right\rfloor -(k+1) \end{aligned}$$ matchings \(M_1,\dots ,M_N\), each of size n. We show that G has a rainbow matching of size \(n-k\), i.e. a matching of size \(n-k\) with all edges coming from different \(M_i\)’s. Several choices of the parameter k relate to known results and conjectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.