Abstract
We studied theoretically the angular distributions and the rainbows in the case of 1GeV protons channeled in the ropes of (10,10) single-wall carbon nanotubes. It was assumed that the transverse cross section of a rope could be described via a (two-dimensional) hexagonal superlattice with one nanotube per lattice point. The rope length was varied between 2.4 and 7.2μm, corresponding to the reduced rope lengths associated with the transverse proton motion close to the centers of the regions in between three neighboring nanotubes, Λb, between 0.17 and 0.50, respectively. The angular distributions of channeled protons were generated by the computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. We used the Molière’s expression for the interaction potential of the proton and a carbon atom. The rainbow lines were determined numerically too. We showed that they ensured the full explanation of the angular distributions. The effect of zero-degree focusing of channeled ions for the reduced rope length Λb=0.50 was also observed, indicating the existence of the rainbow cycles in the evolution of the angular distribution. We noted a strong influence of the rainbow effect on the effect of zero-degree focusing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.