Abstract

The rainbow connection number, rc(G), of a connected graph G is the minimum number of colours needed to colour its edges, so that every pair of its vertices is connected by at least one path in which no two edges are coloured the same. In this note we show that for every bridgeless graph G with radius r, rc(G) ≤ r(r + 2). We demonstrate that this bound is the best possible for rc(G) as a function of r, not just for bridgeless graphs, but also for graphs of any stronger connectivity. It may be noted that for a general 1-connected graph G, rc(G) can be arbitrarily larger than its radius (K 1,n for instance). We further show that for every bridgeless graph G with radius r and chordality (size of a largest induced cycle) k, rc(G) ≤ rk. Hitherto, the only reported upper bound on the rainbow connection number of bridgeless graphs is 4n/5 − 1, where n is order of the graph (Caro et al. in Electron J Comb 15(1):Research paper 57, 13, 2008). It is known that computing rc(G) is NP-Hard (Chakraborty and fischer in J Comb Optim 1–18, 2009). Here, we present a (r + 3)-factor approximation algorithm which runs in O(nm) time and a (d + 3)-factor approximation algorithm which runs in O(dm) time to rainbow colour any connected graph G on n vertices, with m edges, diameter d and radius r.

Highlights

  • An edge colouring of a graph is a function from its edge set to the set of natural numbers

  • We present a (r + 3)-factor approximation algorithm which runs in O(nm) time and a (d + 3)-factor approximation algorithm which runs in O(dm) time to rainbow colour any connected graph G on n vertices, with m edges, diameter d and radius r

  • It is interesting to see if there is an upper bound for rainbow connection number which is a function of radius or diameter alone

Read more

Summary

Introduction

An edge colouring of a graph is a function from its edge set to the set of natural numbers. It is interesting to see if there is an upper bound for rainbow connection number which is a function of radius or diameter alone. Note that r is a lower bound on rc(G) and the approximation factor We show that this algorithm runs in O(nm) time, where n and m are the number of vertices and edges of. Contracting every bridge of a general connected graph gives a bridgeless graph and its rainbow colouring can be extended to the original graph by giving a new colour to every bridge Using these ideas, we give a (r + 3)-factor approximation algorithm which runs in O(nm) time and a (d + 3)-factor approximation algorithm which runs in O(dm) time to rainbow colour any connected graph G on n vertices, with m edges, diameter d and radius r (Section 3.2)

Preliminaries
Upper Bounds for Bridgeless Graphs
Bridgeless Graphs
General Connected Graphs
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.