Abstract

SummaryBroadband satellite communication networks, operating at Ka band and above, play a vital role in today's worldwide telecommunication infrastructure. The problem, however, is that rain can be the most dominant impairment factor for radio propagation above 10 GHz. This paper studies bandwidth and time slot allocation problem for rain faded DVB‐RCS satellite networks. We investigate how using finer rain granularity can improve bandwidth utilization in DVB‐RCS return links. The paper presents a mathematical model to calculate the bandwidth on demand. We formulate the radio resource allocation as an optimization problem and propose a novel algorithm for dynamic carrier bandwidth and time slots allocation, which works with constant bit rate type of traffic. We provide theoretical analysis for the time slot allocation problem and show that the proposed algorithm achieves optimal results. The algorithm is evaluated using a MATLAB simulation with historical rain data for the UK. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.