Abstract
The quality of the Ku-band scatterometer-derived winds is known to be degraded by the presence of rain. Little work has been done in characterizing the impact of rain on C-band scatterometer winds, such as those from the Advanced Scatterometer (ASCAT) onboard Metop-A. In this paper, the rain impact on the ASCAT operational level 2 quality control (QC) and retrieved winds is investigated using the European Centre for Medium-range Weather Forecasts (ECMWF) model winds, the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) rain data, and tropical buoy wind and precipitation data as reference. In contrast to Ku-band, it is shown that C-band is much less affected by direct rain effects, such as ocean splash, but effects of increased wind variability appear to dominate ASCAT wind retrieval. ECMWF winds do not well resolve the airflow under rainy conditions. ASCAT winds do but also show artifacts in both the wind speed and wind direction distributions for high rain rates (RRs). The operational QC proves to be effective in screening these artifacts but at the expense of many valuable winds. An image-processing method, known as singularity analysis, is proposed in this paper to complement the current QC, and its potential is illustrated. QC at higher resolution is also expected to result in improved screening of high RRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.