Abstract

Rain induced degradations are significant for terrestrial microwave links operating at frequencies higher than 10GHz. Paper presents analyses done on rain attenuation and rainfall data for three years between 2013 till 2015, in 3.2km experimental link of 38GHz and 0.1km link at 75GHz. The less link distance is maintained for 75GHz operating frequency in order to have better recording of propagation effect as such attenuation induced by rain. OTT Parsivel is used for collection of rain rate database which show rain rate of about 50mm/h and attenuation values of 20.89 and 28.55dB are obtained at 0.01% of the time for vertical polarization under 38 and 75GHz respectively. Prediction models, namely, ITU-R P. 530-16, Da Silva Mello, Moupfouma, Abdulrahman, Lin and differential equation approach are analyzed. This studies help to identify most suitable rain attenuation model for higher microwave bands. While applying ITU-R P. 530-16, the relative error margin of about 3%, 38% and 42% along with 80, 70, 61% were obtained in 0.1%, 0.01% and 0.001% of the time for vertical polarization under 38 and 75GHz respectively. Interestingly, ITU-R P. 530-16 shows relatively closer estimation to measured rain attenuation at 75GHz with relatively less error probabilities and additionally, Abdulrahman and ITU-R P. 530-16 results in better estimation to the measured rain attenuation at 38GHz link. The performance of prominent rain attenuation models are judged with different error matrices as recommended by ITU-R P. 311-15. Furthermore, the efficacy of frequency scaling technique of rain attenuation between links distribution are also discussed. This study shall be useful for making good considerations in rain attenuation predictions for terrestrial link operating at higher frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call