Abstract

This paper developed a detailed fluid dynamics model and a parallel computing scheme for air brake systems on long freight trains. The model consists of subsystem models for pipes, locomotive brake valves, and wagon brake valves. A new efficient hose connection boundary condition that considers pressure loss across the connection was developed. Simulations with 150 sets of wagon brake systems were conducted and validated against experimental data; the simulated results and measured results reached an agreement with the maximum difference of 15%; all important air brake system features were well simulated. Computing time was compared for simulations with and without parallel computing. The computing time for the conventional sequential computing scheme was about 6.7 times slower than real-time. Parallel computing using four computing cores decreased the computing time by 70%. Real-time simulations were achieved by parallel computing using eight computer cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.