Abstract

An electromagnetic railgun pellet injection system that utilizes a laser-induced plasma armature formation has been developed for fusion experimental devices. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. A small amount of hydrogen gas increased the breakdown voltage of helium gas. This effect is considered to be one of the reasons for lowering the energy conversion coefficient for hydrogen pellet acceleration. To compensate for the low pellet acceleration efficiency, a railgun with ceramic insulators and an augmented rail structure has been tested. The energy conversion coefficient using the augment railgun was further increased from that using a single-rail structure with the plastic insulators. The average acceleration rate was almost doubled. The highest hydrogen pellet velocity was about 2.3 km s −1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.