Abstract

A numerical technique for solving current- and thermal-diffusion problems in railgun conductors has been used to study joule heating in rails that are subject to multiple current pulses. Copper rails that are 25 mm high by 12.5 mm wide with a 20-mm-square bore and a current pulse with 1-MA peak current and 1-ms pulse width at half maximum were assumed. This combination of parameters is sufficient to accelerate an 80-g projectile to 2-3 km/s with each current pulse. Three parameters were varied in the analysis: the repetition rate or current pulse frequency (3.3 to 100 Hz), the coolant heat-transfer coefficient (5 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> and 5 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sup> W/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .K), and the coolant channel distribution in the rail. Detailed results are used to illustrate the acceptability or unacceptability of particular combinations of these parameters for operation at steady state. An uncooled rail was not acceptable for steady-state operation. Repetition rates of about 30 Hz were acceptable with the higher coolant heat-transfer coefficient and the best coolant-channel distribution; this included cooling the rail exterior surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.