Abstract
ABSTRACT This paper presents a big data-based analysis of the rail wear of the whole Belgian railway network measured in 2012 and 2019. Wear rates are reported, discussed, and quantitatively formulated as functions of critical factors in terms of curve radius, annual tonnage (rail age), high rail in curves, an average from both rails in straight tracks at rail top (vertical wear) and gauge corner (45° wear) and for steel grade R200 and R260. The influence of preventive grinding is also analysed. The wear rates are derived in an aggregated manner for the whole network. The wear rates do not show significant change with changes in rolling stock over the years, implying that the wear rates could also hold for other networks. It is found that R200 shows, on average, a 34% higher wear rate than R260. Also, the wear rate per tonnage is lower for high-loaded tracks. Thus, time is a relevant factor in explaining the wear evolution of low-loaded tracks; for instance, the effect of corrosion may have an important role. The paper provides statistically significant information that can be used for wear modelling, understanding and treating rolling contact fatigue based on the wear rate and developing tailored rail maintenance strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.