Abstract
Rail surface defects are serious to the quality and safety of railroad system operation. Due to the diversity and randomness of rail defects form, the detection of rail surface defects is a challenging task. Therefore, this paper proposes a new surface defect detection network based on Mask R-CNN to detect rail defects. The detection network is designed with a new feature pyramid for multi-scale fusion; a new evaluation metric complete intersection over union (CIOU) is used in the region proposal network to overcome the limitations of intersection over union (IOU) in some special cases; in the training phase, both transfer learning and data augmentation are used to solve the problem of small defective datasets. The experimental evaluation shows that the model proposed in this paper achieves 98.70% mean average precision (MAP) on the proposed dataset and can locate the defect location more accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.