Abstract
SAMP8, senescence-accelerated mice with age-related deficits in memory and learning, are known to show age-related increases of amyloid precursor protein (APP) expression and to be under elevated oxidative stress. The receptor for advanced glycation end product (RAGE) is a representative influx transporter of APP or amyloid-β (Aβ) protein in cerebral vessels, while low-density lipoprotein receptor (LDLR) and LDL-related protein 1 (LRP1) are efflux transporters. These receptors play roles not only in clearance of Aβ protein but also in control of oxidative stress. In this study, we examined the gene and protein expressions of these receptors, by real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemical techniques. SAMR1 mice with lower expression of APP were as controls. The gene and protein expressions of RAGE were lower in SAMP8 brains than in SAMR1. Those of LDLR were higher in SAMP8 brains than those of SAMR1. There were no differences in the expressions of LRP1 between SAMP8 and SAMR1. Immunosignals of RAGE and LDLR were seen in the cytoplasm of CD34-positive endothelial cells and also in astrocytes, in both strains of mice. These findings suggest that the lower expression of RAGE and the higher expression of LDLR may contribute to clearance of toxic substances and, in addition, be related to elevated oxidative stress in SAMP8 brains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.