Abstract

The receptor for advanced glycation endproducts (RAGE) has been implicated as a critical molecule in the pathogenesis of experimental asthma/allergic airway inflammation (AAI). It has been previously shown that RAGE acts both upstream of interleukin-33 (IL-33) release and downstream of IL-33 release via RAGE-dependent IL-33-induced accumulation of type 2 innate lymphoid cells (ILC2s) in the lungs, which perpetuate type 2 inflammation and mucus metaplasia. However, the mechanism by which RAGE mediates downstream IL-33-induced type 2 inflammatory responses is unknown. This study tested the hypothesis that ILC2s are recruited to the lungs via RAGE-dependent vascular cell adhesion molecule 1 (VCAM-1) expression on lung endothelial cells. House dust mite extract, Alternaria alternata extract, or rIL-33 was used to induce AAI/VCAM-1 expression in wild-type (WT) and RAGE-knockout (RAGE-KO) mice. Intravenous (i.v.) anti-VCAM-1 or intraperitoneal (i.p.) β7 blocking antibody administration was used to determine the role of VCAM-1 in IL-33-induced AAI. Enhanced VCAM-1 expression in the lungs by HDM, AA, or rIL-33 exposure was found to be RAGE-dependent. In addition, stimulation of primary mouse lung endothelial cells with IL-33 induced VCAM-1 expression in WT, but not RAGE-KO cells. Administration of VCAM-1 and β7-integrin blocking antibodies reduced IL-33-induced eosinophilic inflammation, mucus metaplasia, and type 2 inflammatory responses. This study demonstrates that allergen- and cytokine-induced VCAM-1 expression is RAGE-dependent and contributes to lung ILC2 accumulation and downstream eosinophilic inflammation, mucus metaplasia, and type 2 inflammatory responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call