Abstract

Vascular dementia (VaD) ranks as the second most prevalent form of dementia and poses a considerable global health challenge. Icariin has been recognized for its robust neuroprotective effects in combating VaD. Nonetheless, the underlying mechanisms have not been fully elucidated. An integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulations (MDS) was employed to systematically investigate the potential pharmacological actions of Icariin in counteracting VaD. The AGE/RAGE pathway was identified as a promising anti-inflammatory pathway. A chronic cerebral hypoperfusion mouse model was utilized to establish VaD. Both Icariin and FP S-ZM1 (a RAGE inhibitor) were administered through oral gavage and intraperitoneal injection, respectively. The Morris water maze (MWZ) was used to evaluate cognitive functions. Moreover, immunofluorescence, RT-qP CR, and Western blot analyses were carried out to evaluate the effects of FP S-ZM1 on neuroinflammation. Network analysis identified 14 crucial targets and highlighted the AGE-RAGE signaling cascade in diabetic complications as the foremost KEGG pathway with potential anti-neuroinflammatory property. MDS results suggested a stable binding of the RAGE-Icariin complex. Remarkably, Icariin was found to effectively mitigate cognitive deficits in VaD mice, which was correlated with the upregulation of the P I3K/AKT pathway and downregulation of the JNK/cJUN signaling cascade. Critically, co-administration of FP S-ZM1 enhanced Icariin’s ameliorative effects on cognitive deficits, owing to bolstered anti-neuroinflammatory action. This study unveils the potential of Icariin in alleviating cognitive dysfunction and neuroinflammation in VaD, which may be attributed to the modulation of the AGE/RAGE pathway. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call