Abstract

Reversible addition fragmentation chain transfer (RAFT)-mediated polymerization is a novel technique used to impart a living character in free radical polymerization. A mathematical model accounting for the concentrations of the propagating, intermediate, dormant and dead chains is developed based on their reaction pathways. The kinetic scheme used includes initiation, propagation, pre-equilibrium, core-equilibrium and termination of the propagating radicals along with termination reactions of the carbon-centered intermediate radical. This model is combined with chain-length dependant termination model in order to account for the decreased termination rate. The model has been validated against experimental data for solution polymerization of styrene with dithiobenzoate at 80°C. The fragmentation rate coefficient was used as a model parameter and a value equal to 6×104 sec−1 was found to provide a good agreement with the experimental data. The model predictions indicate that the observed retardation can be attributed to the cross termination of the intermediate radical and, to some extent, to the RAFT effect on increasing the average termination rate coefficient. The hypothesised irreversible self termination was found to have a negligible effect on the polymerization rate. While the linear growth of the number average molecular weight along with the low polydispersity, reveal the living nature of RAFT agent and the importance of the transfer constant in controlling these properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.