Abstract

AbstractReversible addition‐fragmentation chain transfer (RAFT) polymerization was used successfully to synthesize temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAAm), poly(methacrylic acid) (PMAA), and their temperature‐responsive block copolymers. Detailed RAFT polymerization kinetics of the homopolymers was studied. PNIPAAm and PMAA homopolymerization showed living characteristics that include a linear relationship between Mn and conversion, controlled molecular weights, and relatively narrow molecular weight distribution (PDI < 1.3). Furthermore, the homopolymers can be reactivated to produce block copolymers. The RAFT agent, carboxymethyl dithiobenzoate (CMDB), proved to control molecular weight and PDI. As the RAFT agent concentration increases, molecular weight and PDI decreased. However, CMDB showed evidence of having a relatively low chain transfer constant as well as degradation during polymerization. Solution of the block copolymers in phosphate buffered saline displayed temperature reversible characteristics at a lower critical solution temperature (LCST) transition of 31°C. A 5 wt % solution of the block copolymers form thermoreversible gels by a self‐assembly mechanism above the LCST. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1191–1201, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.